首页> 外文OA文献 >The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations
【2h】

The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations

机译:构造保守有限差分的乘数法   普通和偏微分方程的方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the multiplier method of constructing conservative finitedifference schemes for ordinary and partial differential equations. Given asystem of differential equations possessing conservation laws, our approach isbased on discretizing conservation law multipliers and their associated densityand flux functions. We show that the proposed discretization is consistent forany order of accuracy when the discrete multiplier has a multiplicativeinverse. Moreover, we show that by construction, discrete densities can beexactly conserved. In particular, the multiplier method does not require thesystem to possess a Hamiltonian or variational structure. Examples, includingdissipative problems, are given to illustrate the method. In the case when theinverse of the discrete multiplier becomes singular, consistency of the methodis also established for scalar ODEs provided the discrete multiplier anddensity are zero-compatible.
机译:我们提出了构造常微分方程和偏微分方程的保守有限差分方案的乘子方法。给定一个具有守恒律的微分方程组,我们的方法基于离散守恒律乘子及其相关的密度和通量函数。我们表明,当离散乘法器具有乘法逆时,所提出的离散化对于任何精度级别都是一致的。此外,我们表明通过构造,离散密度可以精确地守恒。特别地,乘数方法不需要系统具有哈密顿量或变分结构。给出了包括耗散问题在内的实例来说明该方法。在离散乘法器的逆变为奇数的情况下,如果离散乘法器和密度为零兼容,则对于标量ODE也会建立方法的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号